Inference Rules in Nelson's Logics, Admissibility and Weak Admissibility
نویسندگان
چکیده
Our paper aims to investigate inference rules for Nelson’s logics and to discuss possible ways to determine admissibility of inference rules in such logics. We will use the technique offered originally for intuitionistic logic and paraconsistent minimal Johannson’s logic. However, the adaptation is not an easy and evident task since Nelson’s logics do not enjoy replacement of equivalences rule. Therefore we consider and compare standard admissibility and weak admissibility. Our paper founds algorithms for recognizing weak admissibility and admissibility itself – for restricted cases, to show the problems arising in the course of study. Mathematics Subject Classification (2010). Primary 03F99; Secondary 03B53.
منابع مشابه
Multi-modal and Temporal Logics with Universal Formula - Reduction of Admissibility to Validity and Unification
The article studies multi-modal (in particular temporal, tense, logics) possessing universal formulas. We prove (Theorems 11 and 12) that the admissibility problem for inference rules (inference rules with parameters) is decidable for all decidable multi-modal (in particular, temporal) logics possessing an universal formula and decidable w.r.t. unification (unification with parameters). These t...
متن کاملRules with parameters in modal logic I
We study admissibility of inference rules and unification with parameters in transitive modal logics (extensions of K4), in particular we generalize various results on parameterfree admissibility and unification to the setting with parameters. Specifically, we give a characterization of projective formulas generalizing Ghilardi’s characterization in the parameter-free case, leading to new proof...
متن کاملUnification in the normal modal logic Alt1
The unification problem in a logical system L can be defined in the following way: given a formula φ(x1, . . . , xα), determine whether there exists formulas ψ1, . . ., ψα such that φ(ψ1, . . . , ψα) is in L. The research on unification for modal logics was originally motivated by the admissibility problem for rules of inference: given a rule of inference φ1(x1, . . . , xα), . . . , φm(x1, . . ...
متن کاملComplexity of admissible rules
We investigate the computational complexity of deciding whether a given inference rule is admissible for some modal and superintuitionistic logics. We state a broad condition under which the admissibility problem is coNEXP -hard. We also show that admissibility in several well-known systems (including GL, S4, and IPC ) is in coNE , thus obtaining a sharp complexity estimate for admissibility in...
متن کاملOn the Lie-Santilli Admissibility
The largest class of hyperstructures is the one which satisfies the weak properties. We connect the theory of P-hopes, a large class of hyperoperations, with the Lie-Santilli admissibility used in Hardonic Mechanics. This can be achieved by a kind of Ree, sandwich hyperoperation.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logica Universalis
دوره 9 شماره
صفحات -
تاریخ انتشار 2015